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Abstract. We investigate the occurrence of Hund’s rule magnetism in Cn±
60 molecular ions, by computing

the ground-state spin for all charge states n from −3 to +5. The two competing interactions, electron-
vibration (e-v, including Jahn Teller, favoring low spin) and electron-electron (e-e, including Hund-rule
exchange, favoring high spin), are accounted for based on previously computed ab initio coupling parame-
ters. Treating the ion coordinates as classical, we first calculate and classify the static Jahn-Teller distorted
states for all n, inclusive of both e-v and e-e effects. We then correct the adiabatic result by including the
zero-point energy lowering associated with softening of vibrations at the adiabatic Jahn-Teller minima.
Our overall result is that while, like in previous investigations, low-spin states prevail in negative ions,
Hund’s rule high spin dominates all positive Cn+

60 ions. This suggests also that Hund-rule magnetism could
arise in fullerene cation-based solid state compounds, particularly those involving C2+

60 .

PACS. 36.40.Cg Electronic and magnetic properties of clusters – 61.48.+c Fullerenes and fullerene-related
materials (structure) – 71.20.Tx Fullerenes and related materials; intercalation compounds (electronic
structure) – 75.75.+a Magnetic properties of nanostructures

1 Introduction

Magnetism without transition metals is a potentially ex-
citing subject. As an example, carbon magnetism has gen-
erated some recent interest, in connection with some ful-
lerene-derived carbon-only magnetic materials [1,2]. In
these materials however the fullerene cage is disrupted into
some sort of three-dimensional bonding network. In this
paper we focus on carbon magnetism that may occur in
isolated fullerene ions, and in ionic fullerene compounds
where electrons are added or subtracted to C60 molecules
that preserve their overall molecular integrity.

Unconventional properties, including magnetism, of
negative C60 ions have in fact been previously discussed in
the literature. Due to the high symmetry of the molecule,
the threefold degenerate t1u molecular orbital of C60

will, when partly filled, be affected by Coulomb exchange
[3–5], which favors molecular Hund’s rule magnetism,
quite similar to that leading to the atomic magnetic mo-
ments in ordinary d and f elements and compounds. In ad-
dition to displaying Hund-rule physics, a high-symmetry
molecule will however also undergo Jahn-Teller (JT) dis-
tortions. The JT ground state favors electron spin pairing,
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generally leading to larger energy gains for low-spin states
than for high-spin states. Molecular Hund-rule exchange
and JT are therefore competing effects from the point
of view of magnetism. Past studies indicated that in
Cn−

60 ions the JT interaction is in fact somewhat stronger
than Coulomb exchange, leading to low-spin ground states
[5–9]. 1 Nonetheless, the balance between JT and Hund’s
rule is to some degree compound dependent, leading to a
close match in certain chemical environments. Spin gaps
of the order of 100 meV between the S = 0 ground state
and the S = 1 excitation of the C2−

60 or equivalently of

1 Low-spin ground state is also observed in a number of di-
radicals [10,11], but the situation there is quite different from
C60 ions. In ideal icosahedral C60 ions the degenerate orbitals
require a regular first Hund rule with maximum spin. Density-
functional theory (DFT) calculations do of course confirm that.
A low-spin ground state may be eventually obtained if, upon
lowering the icosahedral symmetry by means of a JT distortion,
the corresponding energy gain happened to be large enough to
reverse the undistorted high-spin situation. In the aromatic di-
radicals instead, two distant unpaired spins interact somewhat
weakly through the molecular backbone, and a Heitler-London
singlet ground state appears to be achieved, no distortions
involved.
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the C4−
60 ion were reported in NMR studies of compounds

like K4C60 and Na2C60, but a narrower 10 meV gap has
been suggested for the n = −2 fluctuating charge state in
CsC60 [12]. The magnetism of TDAE-C60 [13,14] can also
be attributed to a spin triplet in charge fluctuating C2−

60
states [15].

The main question which we wish to address here is
what ground-state spin is to be expected for positive Cn+

60

ions. The calculations will be done in parallel for Cn+
60 and

Cn−
60 so as to emphasize the analogies and the differences

that will emerge. Zero-point effects are also approximately
included, and their effect is shown to be non negligible.

Data on Cn+
60 molecular ions do not appear to be read-

ily available. In particular the published photoemission
spectra of C60 [16,17] imply C+

60 final states. This n = 1
state is affected by JT but clearly not by Hund’s rule.
Some charge-transfer compounds contain nominal C2+

60
ions. While it is presently unclear whether higher charge
states are accessible, acceptor compounds with nominal
(AsF6)2C60 and (SbF6)2C60 stoichiometries have been
described, containing again C2+

60 molecular ions. Recent
data, including anomalously short spin-lattice relaxation
times [18], strongly suggest the possibility of magnetism
of the C2+

60 ions.
Here we address the question of magnetism of Cn+

60
ions by addressing quantitatively the competition between
JT and Coulomb exchange in these ions. Both JT and
intra-molecular exchange terms are calculated to be indi-
vidually stronger in Cn+

60 than in Cn−
60 [5,19]. Preliminary

calculations and estimates based on the adiabatic approx-
imation [5] did foreshadow the predominance of Hund’s
rule exchange in Cn+

60 , as opposed to the predominance of
JT in Cn−

60 . In the adiabatic approximation however, the
JT effect is postulated to be static, neglecting zero-point
motion of the carbon nuclei (responsible for turning JT
from static to dynamic, even at T = 0). This simplifi-
cation might be unsafe, as it is known to underestimate
the JT energy gain [8]. In turn, it might seriously impair
our understanding of the competition between high spin
and low spin, through the neglect of very large corrections
associated to the different zero-point vibrational quantum
kinetic energy associated with states of different spin. Here
we estimate these zero-point effects and include them in
the coupled JT-Hund’s rule problem, thus correcting the
adiabatic result. An accurate evaluation of this correction
is in fact quite generally a formidable task. We show here
that one lucky feature of Cn+

60 ions is that their strong
e-v coupling makes the basic zero-point correction a good
approximation to the true result. Our bottom-line con-
clusion will be that whereas quantum corrections to the
ground state energy are confirmed to be large, they do
not reverse the ground-state spin state for any of the Cn+

60

ions. In particular the prediction that C2+
60 should be mag-

netic is maintained. It is in fact reinforced, with the S = 1
ground state about 30 meV lower than the lowest S = 0
state.

This prediction does not of course imply that com-
pounds containing Cn+

60 will by necessity be magnetic.
Electron kinetic energy associated with hopping between

molecules do in principle favor band electron spin pair-
ing, and a standard nonmagnetic metallic state. However,
any insulating states that could arise due to very narrow
bands, such as a Mott or more probably a Mott-JT insu-
lator [20], is very likely to be magnetic. In this regard it
seems interesting that both (AsF6)2C60 and (SbF6)2C60

acceptor intercalated materials, nominally containing dou-
bly positive fullerene ions were indeed found to be elec-
trical insulators, with activation gaps of 0.22 and 0.64 eV
respectively [21].

The starting point of this paper will be the static, adi-
abatic JT-distorted state of all Cn±

60 ions treated in the
simplest model Hamiltonians that includes both e-v and
e-e interactions. Each of these static JT wells, or “val-
leys”, is characterized by a reduction of symmetry from
icosahedral to some subgroup. New vibrational frequencies
arise at each such valley. We determine these frequencies
by evaluation of the Hessian energy matrix at the energy
minimum [22]. We use the lowering of the zero-point vibra-
tional energies from the undistorted to the JT distorted
state to estimate the leading quantum correction to the
adiabatic approximation. The next-order quantum correc-
tion would arise from weak tunneling between equivalent
valleys. This is the conceptually important step that leads
from static to dynamic JT, with full restoration of the
undistorted icosahedral symmetry. The associated energy
correction expected is however relatively minor in Cn+

60 ,
in view of the large e-v couplings. In the limit of infinite
coupling the tunneling corrections vanish, and all quan-
tum effects coincide exactly with the zero-point lowering.
Therefore, a direct quantitative check that the tunneling
corrections are reasonably small already in the weakest
coupling case of C1−

60 , and already negligible in C1+
60 justi-

fies us in neglecting them for all other charge states. The
accuracy of this neglect is, it should be noted, particularly
good for the positive ions Cn+

60 , where the e-v coupling is
larger than in Cn−

60 .
This paper is organized as follows. Section 2 introduces

the model and the parameters used in this calculation,
which is then described in Section 3, along with the prop-
erties of the JT valleys for all values n and S. The zero-
point non-adiabatic corrections are described in Section 4,
and the overall results are finally discussed in Section 5.

2 The model Hamiltonian

We begin by reviewing here the model Hamiltonian previ-
ously introduced in reference [5] to describe the electron-
vibration coupling and Coulomb exchange of holes in the
hu fivefold-degenerate highest occupied molecular orbital
(HOMO), and of electrons in the threefold-degenerate t1u

lowest unoccupied molecular orbital (LUMO) of C60:

Ĥ = Ĥ0 + T̂vib + V̂vib + Ĥe−v + Ĥe−e (1)
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where

Ĥ0 =ε
∑
σm

ĉ†σmĉσm, (2)

T̂vib =
∑
iΛµ

~ωiΛ

2
P̂ 2

iΛµ, (3)

V̂vib =
∑
iΛµ

~ωiΛ

2
Q̂2

iΛµ, (4)

Ĥe−v =
∑
r iΛ

kΛgr
iΛ~ωiΛ

2

∑
σmm′µ

CrΛµ
mm′ Q̂iΛµ ĉ†σmĉσ −m′ , (5)

Ĥe−e =
1
2

∑
σ,σ′

∑
mm′
kk′

wσ,σ′ (m, m′; k, k′)ĉ†σmĉ†σ′m′ ĉσ′k′ ĉσk

(6)

are respectively the one-electron Hamiltonian, the vibron
kinetic energy, the harmonic restoring potential toward
the equilibrium configuration of neutral C60, the electron-
vibron coupling (in the linear JT approximation) [19,23],
and finally the mutual Coulomb matrix element repre-
senting intra-molecular repulsion between the holes/el-
ectrons [5]. Here ĉ†σm denote creation operators of either
a hole in the HOMO or an electron in the LUMO, de-
scribed by the single-particle wave functions ϕmσ(r). σ in-
dicates the spin projection; m labels the component within
the degenerate electronic multiplets, according to the C5

character from the Ih ⊃ D5 ⊃ C5 group chain [23,24].
i enumerates the vibration modes of symmetry Λ (2 Ag,
8 Hg, and 6 Gg modes, the latter being JT active in the
hole case only). CrΛµ

mm′ are Clebsch-Gordan coefficients [24]
of the icosahedral group Ih, for coupling hu/t1u states to
phonons of symmetry Λ. r is a multiplicity label, relevant
for hu holes and Hg vibrations only, where it takes two
values, 1 and 2 [19,24]. Q̂iΛµ are the dimensionless molec-
ular normal-mode vibration coordinates (measured from
the adiabatic equilibrium configuration of neutral C60, in
units of the length scale x0(ωiλ) =

√
~/(ωiλ mC) associ-

ated with each harmonic oscillator where mC is the mass
of the C atom), and P̂iΛµ the corresponding conjugate mo-
menta. Finally, spin-orbit, exceedingly small in C60 [25],
is neglected throughout.

For holes, the JT model defined by equations (3, 4, 5),
for Cn+

60 is conventionally denoted as hn ⊗ (A + G +
H): hn refers to the hole occupancy of the hu HOMO,
and A, G, H refer to the 2 nondegenerate Ag, 6 fourfold-
degenerate Gg and 8 fivefold-degenerate Hg molecular vi-
bration modes that are linearly coupled to hu in icosahe-
dral symmetry [19,23,26]. For electrons, the JT model is
tn ⊗ (A + H), tn referring to n electrons occupying the
t1u LUMO, linearly coupled to the 2 Ag and 8 Hg vibra-
tional modes only. In all calculations we shall adopt the
numerical values of the e-v coupling parameters gr

iΛ, listed
in Table 1, previously obtained from first-principles DFT
electronic structure calculations in reference [19]. A re-
cent DFT calculation [27] based on a different functional
reported couplings that are similar on the whole to those
of Table 1, the main difference concerning a closer com-

Table 1. Computed vibrational eigenfrequencies, and e-v lin-
ear coupling parameters for the hu HOMO and t1u LUMO in
C60 [19].

~ωiΛ ~ωiΛ g1
iΛ g2

iHg
giΛ

cm−1 meV (HOMO) (HOMO) (LUMO)

Ag

500 62.0 0.0591 - 0.1565

1511 187.4 0.2741 - 0.3403

Gg

483 59.9 0.7567 - -

567 70.3 0.1024 - -

772 95.7 0.8003 - -

1111 137.8 0.6239 - -

1322 163.9 0.2277 - -

1519 188.4 0.4674 - -

Hg

261 32.4 3.0417 −0.0045 0.4117

429 53.2 1.0587 0.6131 0.4886

718 89.0 0.0103 0.9950 0.3500

785 97.3 0.7836 −0.0309 0.2238

1119 138.7 0.0514 0.2151 0.1930

1275 158.0 0.4586 0.2440 0.1382

1456 180.5 0.8482 0.4530 0.3152

1588 196.9 0.7436 −0.4488 0.2893

petition between D3h and D5d valleys for the distortion
of C1−

60 . The JT stabilization energy based on the DFT
parameters of reference [19] is only about one fifth of that
found based on the intermediate neglect of differential
overlap (INDO) model [28]. We think that these earlier
calculations, as well as more recent Hartree-Fock (HF)
estimates [29] also suggesting large e-v couplings and en-
ergy gains are somewhat less dependable. We believe the
smaller DFT JT gains more realistic for two main reasons:
(i) the HF calculations miss an important loss of correla-
tion energy due to opening of the JT gap; (ii) preliminary
results indicate that the HOMO photoemission spectrum
based on the DFT parameters [30] is in very good agree-
ment with experiment [16,17]. By contrast, for C−

60, DFT
computed electron-phonon couplings [31–34] appear to be
significantly smaller than those obtained from photoemis-
sion of C−

60 [35]. While we can offer no explanation for
that discrepancy in negative ions, we note that the DFT-
derived couplings used here for Cn+

60 are probably also
slightly underestimated, however probably only by some
10 to 20%.

The e-v couplings gr
iΛ in equation (5) are dimension-

less, measured in the units of the corresponding harmonic
vibrational energy quantum ~ωiΛ. Modes (e.g. the second
Gg mode) with gr

iΛ � 1 are thus only weakly coupled;
conversely, modes (e.g. the lowest Hg mode) with a large
gr

iΛ > 1 are strongly e-v coupled. The numerical factors
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Table 2. The Coulomb parameters for Cn±
60 , defining Ĥe−e

through (6) and (7), as obtained from the DFT calculations of
reference [5].

Parameter Value

[meV]

HOMO (Cn+
60 )

F1 15646

F2 105

F3 155

F4 47

F5 0

U 3097

LUMO (Cn−
60 )

J 32

U 3069

kAg = 5
1
2 , kGg = (5/4)

1
2 , kHg = 1 for the HOMO, and

kAg = 3
1
2 , kHg = 6

1
2 for the LUMO are introduced for

compatibility with the normalization of the e-v parame-
ters in reference [19].

The Coulomb matrix elements are defined by:

wσ,σ′(m, m′; k, k′) =
∫

d3r

∫
d3r′

× ϕ∗
mσ(r)ϕ∗

m′σ′(r′)uσ,σ′(r, r′)ϕkσ(r)ϕk′σ′(r′) (7)

where uσ,σ′(r, r′) is an effective Coulomb repulsion,
screened by all other electrons of the molecule (eventu-
ally also by electrons in all other molecules in a solid state
compound; but we shall focus here on the isolated ion). A
detailed symmetry analysis [5] shows that, assuming spin-
independence of the orbitals, this set of coefficients can be
expressed as

wσ,σ′(m, m′; k, k′) =
∑

r,r′,Λ

F r,r′,Λ

(∑
µ

CrΛµ
mk Cr′Λµ

m′k′

)
(8)

in terms of a minimal set of independent Slater-type pa-
rameters F r,r′,Λ [36]. A DFT estimate of these parame-
ters was previously obtained in reference [5], and for our
calculation we adopt those values of the Coulomb param-
eters. They are reproduced for completeness in Table 2.
Other sets of couplings, obtained by means of a simple
(and clever) model for the HOMO and LUMO orbitals [37]
and by a fit to multi-configuration HF calculations [29],
are in substantial agreement with each other, but they are
both much larger than the DFT couplings of reference [5],
due to complete neglect of screening. We believe that the
actual Coulomb parameters of C60 lie somewhere in be-
tween the DFT couplings used here and the “bare” ones
of references [29,37], but most likely closer to the DFT
ones, due to the large polarizability of C60.

For the HOMO Coulomb parameters we use the short-
hands

F1 = FAg , F2 = FGg , F3 = F 1,1,Hg , (9)

F4 = F 2,2,Hg , F5 = F 1,2,Hg .

The Coulomb energy connected with the total molecular
charge fluctuation in the HOMO, conventionally called the
hole “Hubbard U” is given by the combination

U =
(

F1

5
− 4 F2

45
− F3

9
− F4

9

)
· (10)

For electrons in the LUMO, we have instead an electron
Hubbard U given by U = FAg/3−FHg/3 and a Hund-rule
exchange J = FHg /2.

In either case, of electron or of holes, U defines an
average Coulomb repulsion within the multiplet of states
of that molecular ion Cn±

60 , such that the average energy
for each n

Eave(n) = ε n + U
n(n− 1)

2
· (11)

We observe that U differs from a more common defini-
tion of the Hubbard repulsion in lattice models, which
involves the lowest state in each n-configuration: Umin =
Emin(n+1)+Emin(n−1)−2Emin(n). This second defini-
tion is inconvenient here, since it depends wildly on n. The
Hubbard U’s are given here for completeness, and because
they will be useful in different contexts. However we must
recall that the U term is irrelevant for the determination
of the ground-state spin of each Cn±

60 ion.

3 The adiabatic JT valleys

Though a rather idealized description of real Cn±
60 ions,

the model Hamiltonian (1), does nevertheless not lend
itself to an exact solution. The vibronic eigenstates are
generally complicated combinations in the direct product
of each (up to 252-dimensional) fixed-n electronic space,
times the infinite-dimensional space of the vibrational de-
grees of freedom. Even with the help of spin and orbital
symmetries, exact solutions of the quantum problem (1)
are only available in two limiting cases, namely the limit of
weak e-v coupling [8,38,39] and that of infinitely strong
e-v coupling [7,22,26,40]. For Cn±

60 , where the couplings
range from intermediate to large, some approximations are
therefore called for. If the phonon kinetic term T̂vib is ne-
glected in the so-called adiabatic approximation, the dis-
tortion operators Q̂iΛµ are replaced by c-number coordi-
nates. This approximation yields the leading ground-state
energy lowering ∝∑(gr

iΛ)2~ωiΛ, exact in the limit of large
e-v couplings gr

iΛ →∞. [Note however that, in this limit,
both initial assumptions of harmonic vibrations (4) and
of linear e-v coupling (5) become anyway questionable].
In Section 4 we shall deal with the leading quantum cor-
rections to the adiabatic approximation ∝ ∑

(gr
iΛ)0~ωiΛ

by taking zero-point energy shifts into account.
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Table 3. The three contributions (restoring harmonic potential, e-v coupling, and e-e exchange – the [Un(n− 1)/2] term is

excluded from Ĥe−e) in the adiabatic energy Eadiab for Cn±
60 in all possible charge and spin states. As usually occurs in JT,

the contribution
〈
Ĥe−v

〉
= −2

〈
V̂vib

〉
= −2Vvib(Qmin). The following columns report the leading zero-point energy correction

Ezero (Eq. (15)) and the sum of this correction to the adiabatic energy, representing our best estimate of the energy of each
valley, relative to the undistorted state of the ion. For C±60, the last column reports the exact energy obtained by Lanczos
diagonalization. All energies are in meV. Boldface indicates the ground-state total energy at each n (high spin for cations, low
spin for anions). For positive ions, comparison with the exact result in the last column indicates a fairly good approximation
already for n =1; and we expect the accuracy to be even better for n = 2, 3, 4, 5 holes.

n S
〈
V̂vib

〉 〈
Ĥe−v

〉 〈
Ĥe−e

〉
Eadiab Ezero Eadiab + Ezero Eexact

Cn+
60

1 1/2 69 −138 0 −69 −51 −120 −103

2 0 270 −540 141 −129 −72 −201

1 99 −197 −43 −142 −92 −234

3 1/2 267 −534 99 −168 −122 −290

3/2 99 −197 −123 −222 −92 −314

4 0 361 −723 162 −200 −133 −332

1 229 −459 19 −211 −134 −345

2 69 −138 −238 −308 −51 −359

5 1/2 308 −616 105 −203 −150 −353

3/2 169 −338 −87 −256 −98 −354

5/2 0 0 −397 −397 0 −397

Cn−
60

1 1/2 38 −77 0 −38 −113 −152 −76

2 0 149 −298 56 −93 −115 −207

1 38 −77 −32 −71 −113 −184

3 1/2 113 −225 28 −85 −171 −256

3/2 0 0 −97 −97 0 −97

The classical treatment of the vibration coordinates
breaks the full molecular symmetry (here icosahedral sym-
metry) in all configurations possessing a nonzero distor-
tion QiΛµ (Λ = Gg, Hg). Therefore states of different
icosahedral symmetry representations are in general inter-
mixed, leaving only the total number of holes n, the total
spin S and its projection Sz conserved in the adiabatic
ground state. Here we will assume the orbitals to remain
basically unchanged upon JT distortion, thus neglecting
any small JT-induced change of the Coulomb Hamilto-
nian Ĥe−e. The latter is therefore still determined accord-
ing to equations (6, 7, 8) by the same parameters Fi of
Table 2, as in the undistorted icosahedral configuration.
We will also assume no change of the vibration frequen-
cies ωiΛ and couplings gr

iΛ upon charging. While this is of
course at variance with much established evidence show-
ing vibration frequency shifts in the percent range per

each added electron, it is perfectly in line with the other
approximations intrinsic in our model, and in its solution.
We leave the Ag modes out of the adiabatic calculation,
since despite their nonzero linear e-v coupling they simply
contribute a trivial spin- and symmetry-independent term

EAg (n) = −1
8
n2
∑

i

g2
iAg

~ωiAg = −a n2; (12)

a = 1.79 meV (HOMO), a = 2.90 meV (LUMO),

to the total energy Eave(n) (Eq. (11)), which could effec-
tively be included into U . Because of particle-hole sym-
metry (exchanging creation and annihilation operators)
of the Hamiltonian (excluding H0, the Ag modes and the
average U contribution), positive charges n > 5 can al-
ways be mapped onto n ≤ 5, and negative n > 3 onto
n ≤ 3.
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Table 4. Number and local symmetry of the JT minimal valleys for each charge n and spin S in Cn±
60 ions. The 5th column

gives, for each given valley, the number of equivalent valleys that are first, second, etc. neighbors of that valley in Q space. The
last column gives the total magnitude of the dimensionless JT distortion at each minimum.

n S number of local number of distortion

minima symmetry 1st, 2nd, 3rd, 4th... neighbor minima |Qmin|
Cn+

60

1 1/2 6 D5d 5 1.58

2 0 6 D5d 5 3.12

1 15 D2h 4 4 4 2 1.87

3 1/2 30 C2h 2 1 2 4 4 2 2 2 4 4 2 3.08

3/2 15 D2h 4 4 4 2 1.87

4 0 10 D3d 3 6 3.52

1 30 C2h 2 2 2 2 1 4 4 4 6 2 2.85

2 6 D5d 5 1.58

5 1/2 60 C2h 1 2 2 4 4 4 2 2 2 4 2 2 4 2 2 2 4 4 4 2 2 1 1 3.27

3/2 30 C2h 8 12 8 1 2.46

5/2 1 Ih 0 0

Cn−
60

1 1/2 ∞ Ci or higher ∞ 0.91

2 0 ∞ Ci or higher ∞ 1.79

1 ∞ Ci or higher ∞ 0.91

3 1/2 ∞ Ci or higher ∞ 1.55

3/2 1 Ih 0 0

For each charge n and spin S and as a function of
the vibration coordinates Q, the lowest adiabatic poten-
tial surface V ad

n,S(Q) is obtained as the sum of the lowest
eigenvalue of Ĥe−e+Ĥe−v(Q) in the n-electron spin-S sec-
tor, plus the harmonic restoring term Vvib(Q). Allowing
the 64 (6×4 Gg

2 plus 8×5 Hg.) vibration coordinates Q
to relax, we determine the optimal distortions Qmin by full
minimization of V ad

n,S(Q) in the space of all vibration co-
ordinates Q. Details of this minimization were previously
reported in references [5,41].

Table 3 summarizes the optimal adiabatic energies
Eadiab(n, S) = V ad

n,S(Qmin). The separate vibration, e-v,
and exchange contributions are specified. The results show
that the adiabatic valley minima of positive C60 ions are
systematically lower for high-spin states, while the adia-
batic outcome for negative ions favors marginally low spin,
and is essentially uncertain, with small and poorly reliable
energy differences between high- and low-spin states.

2 The Gg modes are irrelevant for the negative ions, but rel-
evant for positive ions.

Positive and negative ions differ qualitatively also in
the geometric nature of the JT distortions characterizing
the minimal valleys in the space of coordinates Q. The
tn ⊗ H model applicable to electrons in Cn−

60 leads to a
flat continuous manifold of equivalent points. The valleys
are really troughs, which could be imagined as “Mexican
hats” [7,42,43]; the study of these 2-dimensional (n = 1, 2)
and 3-dimensional (n = 3) troughs is a classic topic in JT
physics [43,44].

Conversely, for holes in Cn+
60 the hn ⊗ (G + H) JT

model gives rise to discrete sets of isolated minima
[19,23,26,45]. The nature and symmetry of these discrete
valleys depends on the details of the e-v couplings and on
the interplay with Coulomb interaction. We shall describe
here in some detail the minima obtained in this calcula-
tion.

To identify these minima, we generate about a hundred
randomly distributed distortions away from the Ih high-
symmetry point, and let the vibration coordinates relax
from there to the closest energy minimum, by combined
standard (simplex and conjugate-gradients) minimization
algorithms. We then apply the symmetry operations of



M. Lüders et al.: Hund’s rule Magnetism in C60 ions? 63

the icosahedral group to the each minimum found, locat-
ing all possible equivalent minima. Although the method
employed is not exhaustive, the application of symmetry
and the thoroughness of our search, carried out with a
large variety of starting points guarantees in practice the
retrieval of all relevant minima. We can readily discard,
for example, the few cases where minimization led to sad-
dle points or to secondary, local minima, based on simple
comparison of the energy values. In this way, for each n
and S, we finally obtain the set of equivalent valleys that
are global adiabatic energy minima for Cn+

60 . The amount
of “radial” distortion at the adiabatic minima for each
mode is tabulated in the Appendix.

In Table 4 we summarize some global properties of
the JT energy valleys for Cn±

60 in all spin sectors. In these
many-mode JT systems, the local symmetry of an optimal
distortion is described in terms of the subgroup Glocal ⊂ Ih

of symmetry operations which leave that minimum invari-
ant. The minima in the simple n = 1 S = 1

2 case, where e-e
interactions are irrelevant, are believed to be six valleys of
D5d symmetry [19,23,26] – the alternative possibility of
ten D3d valleys apparently disfavored by the specific cou-
plings obtained for fullerene [19]. Table 4 reveals a sym-
metry between the minima for n = 4 S = 2 and n = 1
S = 1

2 , as well as for n = 2 S = 1 and n = 3 S = 3
2 .

These symmetries are at first sight surprising, but can be
readily explained by applying a particle-hole transforma-
tion to the fermion operators of only one spin kind, in the
fully spin-polarized states. This transformation maps the
Hamiltonian matrices of an n-particle states (apart from
a constant exchange term) into those of (5 − n) particle
states, with a sign change of the vibron interaction Ĥe−v

that shifts each minimum Qminto the opposite locations
−Qmin. We have therefore V ad

4,2(Q) = V ad
1,1/2(−Q) + C,

with C = − 2
3F2 − 5

6F3 − 5
6F4 = −238 meV. The same

connection between the n = 2 S = 1 and the n = 3
S = 3

2 adiabatic potentials involves an energy shift C =
− 2

9F2− 5
18F3− 5

18F4 = −80 meV. The same symmetry re-
lates n = 5 S = 5

2 to n = 0 S = 0, where no JT distortion
takes place.

In general, the number of JT valleys (third column of
Tab. 4) is related to the local symmetry. It is basically
given by the ratio |Ih|/|Glocal| of the order of the icosa-
hedral group (120) to the order of the invariant subgroup
Glocal. However, n = 5 holes make an exception to this
rule. Here, at half filling, in addition to the Ih symme-
try, the system is particle-hole symmetric, i.e. invariant
under exchange of creation and annihilation operators of
both spin kinds. This transformation leaves the Coulomb
Hamiltonian Ĥe−e invariant, and again changes sign of
the vibronic interaction Ĥe−v: hence, given any minimum
Qmin, its opposite −Qmin is also an equivalent minimum
of the potential energy surface. For S = 1

2 , this leads to
a doubling of the minima: the local C2h symmetry would
lead to 30 minima, but 30 additional equivalent minima
are added in the opposite positions by particle-hole sym-
metry. For S = 3

2 instead, the number of minima remains
30, since for each minimum there is one of the Ih symmetry

operations, a C2 rotation, that transforms this minimum
into its opposite point3.

Table 4 contains also some information about the con-
nectivity of the minima in Q space. In many cases, the
specification of the number of first, second, etc. neighbors
of a given minimum is sufficient to clarify completely the
topology of the minima in the 64-dimensional space. In
particular, the D5d wells of the n = 1 S = 1

2 , of the n = 2
S = 0, and of the n = 4 S = 2 surfaces are located on
the six vertexes of five-dimensional regular simplexes, gen-
eralizations of the 3D tetrahedron, each minimum being
equidistant to all the others. In analogy, the connectivity
of the 10 D3d minima for n = 4 S = 0 is the same as that
depicted in Figure 1b of reference [23] for a different situ-
ation. For the other cases of lower symmetry, the number
of neighbors of any given order must be complemented by
some extra connectivity information, for which we refer to
previous work [41]. We only observe that for n = 2 S = 1
(equivalently for n = 3 S = 3

2 ), each of the 15 minima is
linked to four nearest-neighbor minima, which, in turn, are
linked to more minima, forming a completely connected
regular polytope. For n = 3 S = 1

2 and n = 4 S = 1, the
30 minima are divided into 6 pentagonal “clusters” of five
nearest-neighboring minima. In contrast, for n = 5 S = 1

2 ,
nearest-neighbor wells come in pairs. Finally, the 30 C2h

minima for n = 5 S = 3
2 , show the largest connectivity,

and sit at the vertexes of a highly symmetric polytope.
Figure 1 pictures the electronic state of the holes at the

adiabatic valleys of Cn+
60 . As typical of JT, distortions are

such that relatively large gaps open between empty and
filled levels. For n > 1 this single-determinant picture is
only approximate: it represents the dominant uncorrelated
configuration within the fully correlated exact electronic
ground state at each well.

The adiabatic valleys described above are the joint re-
sult of e-v couplings and of e-e Coulomb interactions. One
can understand better the specific role of Coulomb inter-
action for the JT distortion by comparing the number and
symmetry of the valleys described above to those obtained
by the same procedure in a hypothetical noninteracting
case, obtained by setting all Fj = 0. Doing that, we find
basically the same general picture of valleys for n = 1 (ob-
viously), but also for n = 2, n = 3, n = 4 S = 1, 2 and
n = 5 S = 3

2 , 5
2 . In all remaining cases the e-e correla-

tions also introduces a qualitative change in the topology
and local symmetry of the minima. Without interactions,
15 D2h minima would replace the 10 D3d minima for n = 4
S = 0; and 20 D3d minima replace the 60 C2h minima for
n = 5 S = 1/2. In all cases (except of course n = 1
and the symmetric n = 4 S = 2), the amount of distor-
tion is a few per cent larger in the uncorrelated case than
when exchange is included, as expected from competing
interactions. For example, without correlation, the total
distortion for n = 2 S = 0 would be 3.16, i.e. exactly
twice the distortion for n = 1, as routinely occurs in JT
when exchange plays no role.

3 The real-space inversion, acting on the real-space displace-
ments, leaves all JT-active normal-mode coordinates invariant,
since they are even (g) under inversion.
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Fig. 1. A line-spectrum representation of the dominant single-determinant electronic state in the optimal adiabatic configuration
of Cn+

60 for each spin S. Levels are ordered for holes.

4 Zero-point quantum corrections

The vibrational quantum kinetic energy, a quantity ne-
glected at the adiabatic level, does in fact contribute quite
substantially to the JT energetics of these multi-mode sys-
tems characterized by intermediate couplings. The zero-
point energy gain associated to the softening of the vibra-
tional frequency at the JT-distorted minima is illustrated
in Figure 2. It represents the leading quantum correction
to the static JT energetics [22,41,46]. To compute this
correction for each charge n and spin S, by finite differ-
ences we evaluate the Hessian matrix of the second-order
derivatives of the lowest adiabatic potential sheet, at each
of the adiabatic JT minima:

H(n, S)α α′ =
∂2V ad

n,S(Q)
∂Qα ∂Qα′

∣∣∣∣∣
Qmin(n,S)

(13)

where α is a collective index for {i Λ µ}. The normal-mode
frequencies ω̃j in each well are computed by taking the
square roots of the eigenvalues of the dynamical matrix
defined by

D(n, S)αα′ = δαα′ ω2
α + ω1/2

α [H(n, S)α α′ − δαα′ωα] ω
1/2
α′ .
(14)

The−δαα′ωα term removes the restoring term from V̂vib in
V ad

n,S , and the ω
1/2
α are introduced by the standard change

of variables to correct for the different “mass” coefficients
of different coordinates Qα in T̂vib. By retaining the har-
monic expansion of the adiabatic potential around a min-
imum the quantum ground state energy of this potential
well is estimated at

∑
j

1
2~ω̃j above the classical minimum,

due to zero-point motion. As illustrated in Figure 2, the
difference between this and the original zero-point energy∑

α
1
2~ωα at the neutral-molecule harmonic minimum pro-

vides the leading quantum correction

Ezero(n, S) =
1
2


∑

j

~ω̃j(n, S)−
∑
iΛµ

~ωiΛ


 , (15)

to the “classical” valley energy Eadiab. Ezero(n, S) in JT
problems is systematically found to be negative in sign,
corresponding to softer vibrations, and a shallower valley
bottom at the new minima than for the n = 0 non-JT
molecule. Table 3 reports the zero-point correction com-
puted as described above, and the estimate of the ground-
state energy obtained by adding the correction Ezero to
Eadiab.

For Cn−
60 , the zero-point corrections favor low-spin

states for both n = 2 (already a S = 0 ground state
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Fig. 2. A pictorial illustrating the origin of the zero-point
energy gain due to vibrational softening at the JT well. The
horizontal axis represents a generic distortion coordinate, the
horizontal thick lines represent the quantum ground states in
the non-JT and JT potential wells.

at the adiabatic level) and n = 3, where the zero-point
correction only affects S = 1/2, lowering it well below the
uncorrected S = 3/2. Note however that in the tn⊗H JT
for the anions, the two (n = 1 and 2) and three (n = 3)
“soft” modes along the trough are associated to vanishing
frequencies ω̃j. They formally contribute a vanishing zero-
point energy to the first sum of equation (15). In our cal-
culation this produces unreasonably large (negative) zero-
point corrections, larger even than the adiabatic energies.
These null terms are correct only in the limit of infinite
coupling, where the “size” of the flat trough is infinite, and
indeed the free pseudorotational motion carries no zero-
point energy. For Cn−

60 , where coupling is finite, and not
especially large, the trough has a finite size of order g2,
which provides some amount of quantum confinement, as-
sociated to a zero-point kinetic energy of order g−2, as was
described in references [7,43]. These extra “confinement”
corrections should be especially sizable when the vibra-
tional wavefunctions have the nontrivial nodal structure
due to the boundary conditions associated to an electronic
Berry phase, i.e. for n = 1, n = 2 S = 1, and n = 3
S = 1/2 [7], but should not change the conclusion that all
Cn−

60 ions should favor low spin.
To get an estimate of the validity of the approxima-

tions employed here, we can compare with the ground
state energy of C−

60 obtained by means of an essentially ex-
act calculation (a Lanczos diagonalization on a truncated,
but well converged, basis) of our Hamiltonian (1) with
the same parameters. The exact energy gain obtained is
−76 meV, which falls in between the adiabatic (−38 meV)
and zero-point corrected (−152 meV) values. Not surpris-
ingly, in this rather weakly coupled case, the zero-point
correction largely overshoots the correct value. As charges
n > 1 are associated to larger distortions, thus effectively
to stronger couplings, we expect that the zero-point cor-
rected energy should be of better quality there. However,
the relative size of the zero-point and confinement cor-
rections to the adiabatic energy makes the whole strong-

coupling expansion rather questionable for all the anions.
Thus the Cn−

60 results as reported here serve mostly for
comparison with those of the cations. For cations we ex-
pect in fact the quality of our zero-point corrected results
to be substantially better.

In the Cn+
60 ions too, in fact, the zero-point energy cor-

rections are rather large, but here the magnitude of the
adiabatic energy gains is even larger. The difference with
the anions is due both to the larger couplings and to the
structure of localized minima as opposed to a flat trough.
Comparison of Tables 3 and Table 4 shows that situations
with a larger number of minima generally yield larger val-
ues of the correction |Ezero|. Quantum kinetic energy in
this respect behaves a bit like statistical entropy, in that
it favors numerous shallower minima against few deeper
ones. The zero-point correction peaks at ≈ −150 meV for
n = 5 S = 1

2 , where the minima are shallow and the low-
est vibrational frequency is as small as ω̃1 ≈ 10 meV in
this case. On the contrary, few well spaced minima, as
for n = 1 S = 1/2 and n = 2 S = 0 are associated to
a smaller zero-point gain of the order ≈ −100 meV. In
the close competition between Coulomb physics (Hund’s
rules) and JT physics (anti-Hund behavior), the zero-point
correction is not irrelevant. As shown by the last column
of Table 3, it reduces drastically the large adiabatic spin
gap between the high-spin ground state and the lowest
spin excitations for n = 4 and for n = 5. Remarkably, the
zero-point correction favors the high-spin state instead in
C2+

60 : the excitation energy to S = 0 is enhanced by the
quantum correction from 13 meV to 33 meV. Thus al-
though the estimated spin gap is not especially large nor
especially reliable, this circumstance makes in our view
the prediction of a S = 1 magnetic C2+

60 ion stronger than
for the other cations.

Could we go beyond the zero point correction, and
get more accurate results? Not easily at this stage. The
zero-point correction represents the g0 term of a large-
coupling expansion, where the adiabatic energy Eadiab is
the leading (g2) term. The next corrections to be consid-
ered, of order g−2 and higher, are associated with anhar-
monicity of the valleys and tunneling amongst them (in
the holes case), and also to mixing of the upper adiabatic
potential surfaces with the associated geometric-phase ef-
fects [7,23,47,48]. A full quantitative description of these
effects would imply a much more sophisticate treatment
of the quantum problem than the simple semiclassic ex-
pansion applied here, and that is beyond the scope of the
present paper. To get an estimate of the importance of
these higher-order corrections, we can again compare, now
for C+

60 the adiabatic (−69 meV) and the zero-point cor-
rected (−120 meV) ground-state energy gains to the exact
on, obtained by a well converged Lanczos diagonalization,
which is −103 meV. We see that although Ezero still over-
shoots the quantum corrections the adiabatic gain, the
residual error of 17 meV is now fairly small. The accu-
racy expected for the zero-point corrected energy gains
for all other cations Cn+>1+

60 is even better. In fact, the
distortions there are larger, tunneling is suppressed, and
the approximation of isolated harmonic JT valleys should
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be much better than for n = 1. Thus, even if a check with
the Lanczos method would be too cumbersome here be-
cause of the excessive basis size required for n > 1, our
zero-point corrected results of Table 3 should be regarded
as practically exact, for the assumed coupling parameters.

5 Discussion and conclusions

The main output of this paper is a determination of the
ground state spin, energy, and distortion magnitude of JT
distorted Cn+

60 molecular ions.
Calculations include both e-e and e-v interactions as

derived from earlier first-principles calculations, as well as
very important quantum vibrational effects, due to the
small mass of the carbon nuclei. The latter are taken into
account approximately by including the changes of vibra-
tional zero-point energy from the undistorted to the dif-
ferent distorted states. These zero-point corrections are
shown to be generally large. In C3−

60 they are even capable
of turning a high-spin ground state into a low-spin one.
As the coupling and thus the distortions are fairly large,
quadratic and higher-order (in Q) e-v interactions and vi-
bration anharmonicity could also be relevant. The present
calculation was however carried out strictly in the linear
e-v coupling approximation.

The parameters used in this calculation, both for
e-e and e-v interaction could be somewhat underestimated
by the local density approximation used in their deter-
mination, as discussed in references [5,19]. Consequently,
both the Coulomb repulsion and the JT effective e-e at-
traction calculated within the local density approximation
might need some correcting in their absolute values. The
balance between these two opposing interactions is del-
icate in Cn−

60 ions (as demonstrated by the presence of
both high-spin and low-spin local ground states in dif-
ferent chemical environments [9,15,49–53]), but low-spin
ground states are generally believed to prevail, in accord
with the present calculation. Contrary to that, in Cn+

60 ,
Hund-rule magnetism and high-spin ground states are pre-
dicted to dominate. Experimentally, so far we found no ev-
idence concerning gas-phase Cn+

60 ions that we could use-
fully address. We do not know at this moment whether
the lifetime of positive ions against fragmentation would
permit experiments to be conducted, and if so whether
the ground-state spins and JT distortions could be deter-
mined and compared with our predictions. Singly charged
C+

60 ions have been created in solution [54], in molecular-
beam photoemission [16,17], and in storage rings [55]: but
they are irrelevant to our present question.

More encouragingly, higher positive charge states have
been pursued in solid-state acceptor compounds [56,57].
The interplay of intra-molecular physics with electron
hopping in a hypothetical fullerene-cation based solid-
state conducting compound is very interesting. Our re-
sults suggest that magnetism should be important in these
compounds, at least so long as the hole bands remain rel-
atively narrow. The HOMO bands of the proposed accep-
tor compounds (AsF6)2C60 and (SbF6)2C60 can indeed
be expected to be rather narrow. In (AsF6)2C60, based on

Table 5. The dimensionless JT distortions |Q̂iΛ| at the min-
ima of Cn−

60 , for each Hg mode and allowed spin S.

n S dimensionless distortions of Hg modes

1 1/2 0.412 0.489 0.350 0.224 0.193 0.138 0.315 0.289

2 0 0.813 0.965 0.691 0.442 0.381 0.273 0.622 0.571

2 1 0.412 0.489 0.350 0.224 0.193 0.138 0.315 0.289

3 1/2 0.706 0.838 0.600 0.384 0.331 0.237 0.540 0.496

3 3/2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

a bct unit cell with lattice parameters a = b = 12.8 Å,
c = 12.4 Å, we can extract a fullerene-fullerene inter-
center distance 10.97 Å, significantly larger than 10.02 Å
of pure C60. On the other hand, the on-site Hubbard U
estimated for holes is comparable to or slightly larger than
that for electrons. It seems reasonable therefore to surmise
that hole-doped (AsF6)2C60 could be, like the electron-
doped K3NH3C60 [58], as well as A4C60 [59,60], a Mott-JT
insulator. Unlike the electron-doped compounds, where
the JT distorted Cn−

60 molecular ion was in a low-spin con-
figuration (S = 1/2 for n = 3, S = 0 for n = 2, 4), we
expect in the divalent acceptor fullerene compound that
the positive C2+

60 ions should be in a high-spin, S = 1 JT-
distorted state. If so, they would constitute an exciting
example of molecular Hund’s rule magnetism. The mag-
netic coupling between neighboring C2+

60 S = 1 ions in
these compounds should most likely be weak and anti-
ferromagnetic [61]. It might be interesting to pursue this
and to seek a Néel state of some kind at very low tem-
peratures. Pressure studies of the electron-doped com-
pounds have revealed insulator-metal transitions such as
that of Rb4C60 [62], and also insulator-superconductor
transitions such as that of K3NH3C60 [63]. Pressure stud-
ies of fullerene acceptors could be an interesting line to
pursue in the future. More generally, the realization of a
well characterized fullerene hole conductor remains a wor-
thy challenge for the future.
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supported by the European Union, contracts ERBFMRXCT-
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and the CINECA Casalecchio Supercomputing Center for com-
puting time and for a fellowship; and by MIUR COFIN01, and
FIRB RBAU017S8R of MIUR.

Appendix

Tables 5 and 6 report the individual amount of JT dis-
tortion associated to each normal mode of C60 at any
equivalent adiabatic minimum of Cn±

60 , for all spin-S sec-
tors. The distortions are given in the dimensionless units
of the coordinate operators |Q̂iΛ|. The appropriate length
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Table 6. The dimensionless JT distortions |Q̂iΛ| at the minima of Cn+
60 , for each Gg and Hg mode and each allowed spin S.

n S Symmetry distortions of Gg modes distortions of Hg modes
1 0 D5d 0.000 0.000 0.000 0.000 0.000 0.000 1.36 0.473 0.00459 0.35 0.023 0.205 0.379 0.333

2 0 D5d 0.000 0.000 0.000 0.000 0.000 0.000 2.69 0.935 0.0095 0.692 0.0455 0.405 0.749 0.657
2 1 D2h 0.0755 0.0102 0.0799 0.0623 0.0227 0.0466 1.58 0.611 0.138 0.404 0.0516 0.262 0.486 0.346

3 1/2 C2h 0.0548 0.0074 0.0580 0.0452 0.0165 0.0339 2.62 1.01 0.185 0.669 0.0799 0.433 0.801 0.571
3 3/2 D2h 0.0755 0.0102 0.0799 0.0623 0.0227 0.0466 1.58 0.611 0.138 0.404 0.0516 0.262 0.486 0.346

4 0 D3d 0.0828 0.0112 0.0877 0.0683 0.0249 0.0512 2.88 1.30 0.494 0.728 0.153 0.553 1.02 0.486
4 1 C2h 0.074 0.010 0.0782 0.061 0.0223 0.0457 2.39 0.968 0.228 0.609 0.0879 0.414 0.767 0.486
4 2 D5d 0.000 0.000 0.000 0.000 0.000 0.000 1.36 0.473 0.0046 0.35 0.023 0.205 0.379 0.333

5 1/2 C2h 0.101 0.0135 0.106 0.0827 0.0302 0.0619 2.70 1.17 0.401 0.683 0.129 0.500 0.926 0.492
5 3/2 C2h 0.0384 0.0053 0.0411 0.032 0.0117 0.024 2.12 0.756 0.0391 0.544 0.0427 0.327 0.605 0.503
5 5/2 Ih 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000

scales x0(ωiΛ) =
√

~/(ωiΛ mC) for the Gg and Hg modes
of C60 are: 76.3, 70.4, 60.3, 50.3, 46.1, 43.0, and 103.7,
80.9, 62.6, 59.8, 50.1, 47.0, 43.9, 42.1 pm, respectively.
For Cn−

60 the amount of “radial” distortion is independent
of the point chosen along the trough. As expected, the
modes characterized by the strongest coupling show the
largest distortion. The mode associated to the largest dis-
tortion is therefore the lowest Hg mode (see Tab. 1) in the
cations. Note also that the Gg modes do not contribute to
the distortions of D5 symmetry, but contribute to all the
lower-symmetry minima.
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